Felix Larrinaga Mondragon University

INTEROPERABILITY FOR COGNITIVE CITIES

Agenda

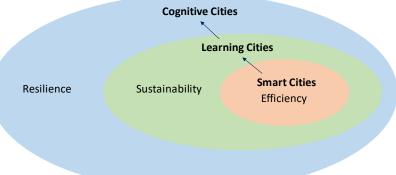
Introduction Background Interoperability Organisational interoperability Semantic Interoperability Conclusions

Felix Larrinaga "Interoperability for Cognitive Cities"

Introduction

- Mondragon University
 - Part of MONDRAGON Corporation (world leader in the cooperative movement) 74.335 people and 260 cooperatives
 - 4 faculties with 4000 students (22 degrees and 15 Master)
 - Faculty of Engineering (9 degrees and 5 Master)
 - Close ties with industry (Research and Knowledge Transfer)
- European Projects (IoT, Smart Cities)
 - System integration and interoperability
 - Data platform provision
 - Data analysis
 - Application development for human interaction
 - UCD Methodologies, ...

BY&FORCITIZENS



Unibertsitatea Faculty of Engineering

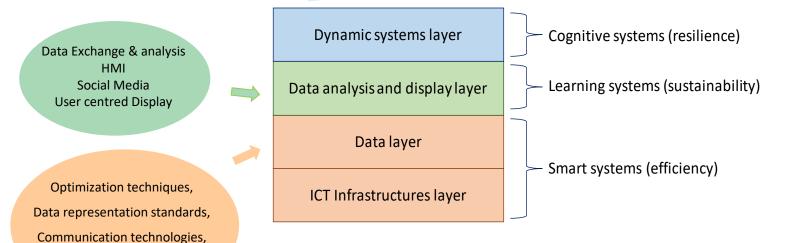
Background

- Smart Cities
 - Optimize infrastructures, making possible an efficient use of resources simplifying life for citizens.
 - Learning Cities
 - Address sustainability challenges (environmental, economical, social)
 - Human involvement (not only technical)
 - Suggestion of actions to change management behavioural patterns

Cognitive Cities

Cognitive cities are those capable to predict and react to disruptive changes or natural disasters. They must address **resilience** challenges.

Matthias Finger and Edy Portmann. What are cognitive cities? In Towards Cognitive Cities, pages 1–11. Springer, 2016.



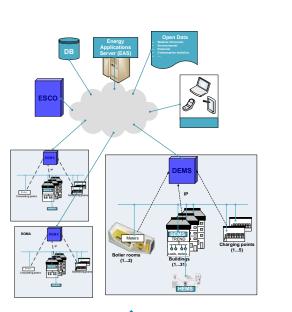
Background (Cognitive Cities)

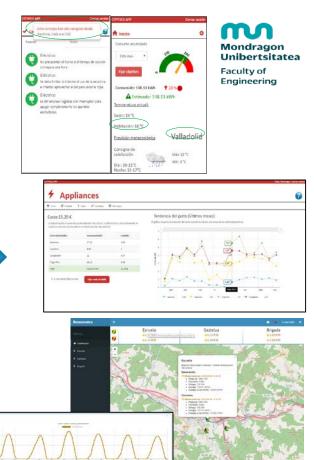
Faculty of Engineering

Real time detection NLP Human-Computer automatic interaction Pattern recognition

Sensors, CPS, ...

21.09.2018


Background



Efficiency

BY&FORCITIZENS

6

Objective and requirements

Engineering

Overall objective

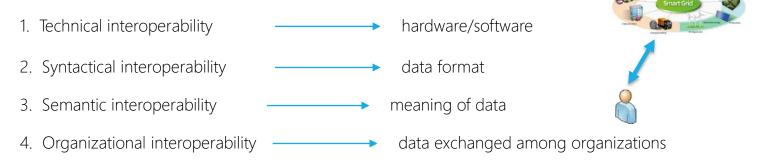
- Learn from different urban environments and assist actors in changing their behavioral patterns and adapting to disruptive changes in collaboration with humans.
- Exchange, extract knowledge and make decisions about different domains for large volumes of data collected at high rates and in most cases in real time

Specific requirements

- Overcome technological and organizational silos
- Reduce the complexity brought by heterogeneous technologies
- Create models of urban data for different domains
- Represent and exchange data in a standardized and machine-readable way

Interoperability

Interoperability

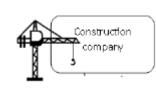

Faculty of Engineering

Interoperability

The ability of two or more systems or components to exchange data and use information.

3rd Generation Partnership Project

• There are four types of interoperability:



Hans van der Veer and AnthonyWiles. Achieving technical interoperability. European Telecommunications Standards Institute, 2008.

BY&FORCITIZENS

Organizational Interoperability

Legislation ... competitors

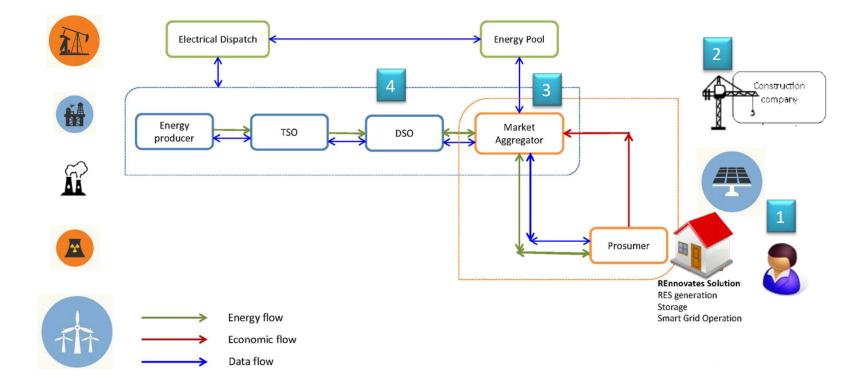
Technology ... People

Key factors

ROI-Funds

Cost

Collaboration (win-win)


norms & regulations

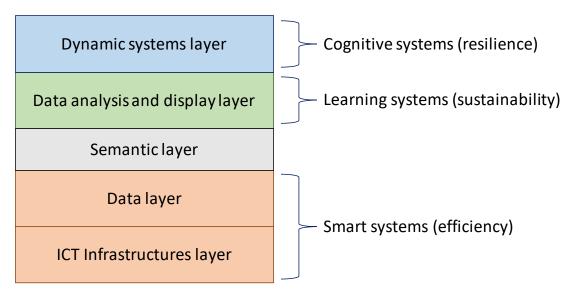
Organizational collaboration example

Semantic Web

Semantic Web

An extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation. Berners-Lee et al.

- Describes content, meaning and data relationships.
- The content on the web is structured as in any database, creating the **Linked Data**. Data can be linked across different domains, eliminating data silos.
- Link, exchange and process data on the Web in a standardized, as well as machine and human-readable way (reduce complexity and increase machine-human interoperability)
- Humans can communicate with machines using a common vocabulary, a common set of rules and even natural language. (Ontologies)
- Machines are capable of inferring knowledge from explicit facts (intelligent agents).

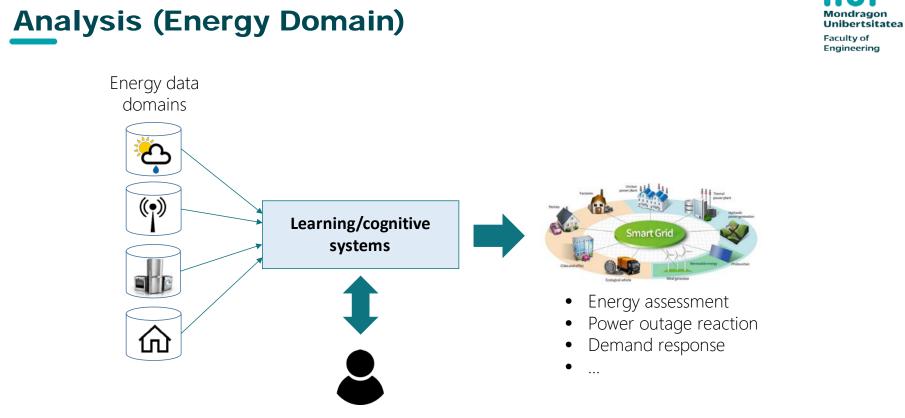

Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific american, 284(5):28-37, 2001.

BY&FORCITIZENS

Mondragon Unibertsitatea

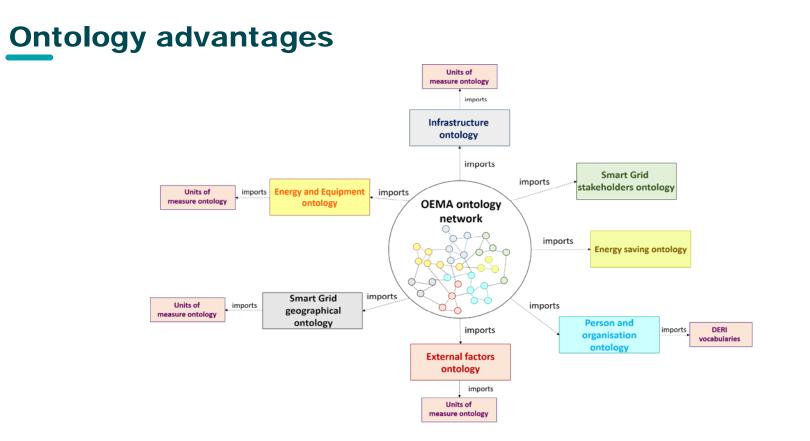
Semantic Layer

Engineering



- Provides a bridge between Smart systems and Learning systems and Cognitive systems.
- Key requisite in the Smart Cities evolution process towards Cognitive Cities

Cuenca, J., Larrinaga, F., Eciolaza, L., Curry, E.: Towards cognitive cities in the energy domain. In: Designing Cognitive Cities: Linking citizens to computational intelligence to make efficient, sustainable and resilient cities a reality. Springer, In press (2018)


21.09.2018

BY&FORCITIZENS

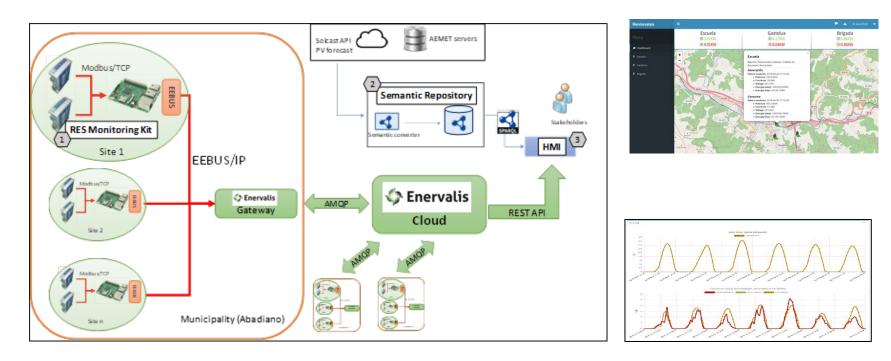
Human-machine interaction

BY&FORCITIZENS

OEMA ontology www.purl.org/oema/infrastructure

J. Cuenca, F. Larrinaga, E. Curry "A Unified Semantic Ontology for Energy Management Applications" 2nd International Workshop on Ontology Modularity, Contextuality, and Evolution (WOMoCoE 2017). Vienna. 21-25 October

21.09.2018


BY&FORCITIZENS

Mondragon Unibertsitatea Faculty of Engineering

Implementation (projects)

Faculty of Engineering

Ontology: http://www.purl.org/dabgeo

Conclusions

- Find room for collaboration among stakeholders (win win)
 - Involvement of financial entities
- Technological platform must be prepared for the future
 - Today technology improvements focus on optimization (Efficiency)
 - Interoperability and standardization (semantics key)
- Identify the challenges to overcome

Conclusions (Challenges vs solutions)

- Long ROI periods vs Short ROI periods (funding in win-win)
- Social acceptance vs facilitators
- Actual Regulation restrictions vs Change of regulation (e.g. support energy management and prosumer)
- Administration Processes burden vs Formulas to speed up processes
- Technical challenges vs good communication skills (facilitators)

- Keep on building demonstrators to validate proposals and improve solutions
- Disseminate results towards administration and regulators

Conclusions (Semantic interoperability)

- Human machine interoperability essential. Consider mainly in research (no market deployment of solutions towards Cognitive Cities yet)
- Semantic Web solution (bridge between Smart systems and Learning & Cognitive systems).
- Semantic representation of different urban domains is a key requisite in the Smart Cities evolution process towards Cognitive Cities
- Many opportunities for research and businesses are opened:
 - Ontology standardization
 - Models and methods for ontology building
 - Guidelines for semantic implementation in Smart Cities towards Cognitive Cities
 - Applications for sustainability and resilience based on semantics
 -

Felix Larrinaga Mondragon University flarrinaga@Mondragon.edu

THANK YOU FOR YOUR ATTENTION!

